
Harmony: An Execution Model and Runtime for
Heterogeneous Many Core Systems

Gregory Diamos and Sudhakar Yalamanchili
School of Electrical and Computer Engineering, Georgia Institute of Technology

Atlanta, Georgia, USA
{Gregory.Diamos@gatech.edu, sudha@ece.gatech.edu}

ABSTRACT
The emergence of heterogeneous many core architectures
presents a unique opportunity for delivering order of magni-
tude performance increases to high performance applications
by matching certain classes of algorithms to specifically tai-
lored architectures. Their ubiquitous adoption, however, has
been limited by a lack of programming models and manage-
ment frameworks designed to reduce the high degree of com-
plexity of software development intrinsic to heterogeneous
architectures. This paper proposes Harmony, a runtime sup-
ported programming and execution model that provides: (1)
semantics for simplifying parallelism management, (2) dy-
namic scheduling of compute intensive kernels to heteroge-
neous processor resources, and (3) online monitoring driven
performance optimization for heterogeneous many core sys-
tems. We are particularly concerned with simplifying de-
velopment and ensuring binary portability and scalability
across system configurations and sizes. Initial results from
ongoing development demonstrate the binary compatibility
with variable number of cores, as well as dynamic adaptation
of schedules to data sets. We present preliminary results of
key features for some benchmark applications.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Concurrent
programming structures; D.3.4 [Processors]: Run-time en-
vironments; C.1.3 [Other Architecture Styles]: Hetero-
geneous (hybrid) systems

General Terms
Languages, Management, Performance

1. INTRODUCTION
The advent of heterogeneous multicore architectures has

had significant impact on the software infrastructure, no-
tably programming models and software support. It has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’08, June 23–27, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-59593-997-5/08/06 ...$5.00.

been well established that specific HPC applications like N-
Body Simulations, Molecular Dynamics, and Terrain Ren-
dering [1] can experience order of magnitude or greater speedups
when paired with architectures that are specifically tailored
to their needs. Similar examples from the HPC commu-
nity include the Los Alamos National Labs Roadrunner sys-
tem. However, a consensus seems to have formed that the
amount of effort required to port or rewrite applications to
take advantage of these heterogeneous architectures without
middleware support is non-trivial at best and herculean at
worst. The need to tailor an application to a specific system
architecture precludes cost-effective migration of an appli-
cation from one system architecture to another making it
difficult to amortize substantial investments in the develop-
ment of code bases or to scale to larger system sizes. Conse-
quently productivity is repeatedly traded for performance.
This limitation motivates the need for runtime environments
that allow applications to harmoniously utilize the hetero-
geneous resources offered by a system in a way that enables
portability and scalability across a range of configurations.

Previous work on application development for heteroge-
neous many core systems has focused on case studies where
the performance of particularly demanding applications is
evaluated on highly specialized architectures such as FP-
GAs, GPUs, IBM Cells, and Intel IXPs, using customized
solutions and vendor supplied tool chains. Programming
language based efforts such as Brook [2] and StreamIt [3]
encapsulate new stream programming models and focus on
compiler-driven optimizations of these computing models on
commodity platforms rather than heterogeneity. Notable
exceptions include a new programming language for paral-
lel systems with heterogeneous memory hierarchies [4] and
efforts in workflow languages and coarse grain data paral-
lel computing [5] that represent model driven approaches to
leveraging existing languages and operating systems. Rela-
tively few efforts have examined the more general problems
of compatibility, scalability, and design complexity on het-
erogeneous platforms for generic applications, being content
instead to address them for specific high profile applications.

In the context of these prior efforts, our approach is to
address the performance-complexity gap by defining a pro-
gramming model and associated execution model that is
implemented by the Harmony runtime. The programming
model is based on the identification of compute kernels,
predicated kernel execution, and a managed shared address
space. The execution model is based on dynamic detec-
tion and tracking of dependencies between compute kernels
(enabled by the programming model), and a decoupling of



kernel invocation and kernel scheduling/execution. The ap-
proach is inspired by solutions to instruction scheduling and
management in out-of-order (OOO) superscalar processors,
where those solutions are now adapted to schedule kernels
on diverse cores. The result is binary compatibility across
system configurations with at least one core in common and
scalability maintained via a two step solution - flow depen-
dencies are first inferred for a window of compute kernels
that have yet to execute and then used as constraints to a
scheduler that attempts to minimize the execution time of
the application while satisfying all dependencies.

2. HARMONY PROGRAMMING MODEL
The core of the Harmony programming model is relatively

simple: applications are composed of code segments that
invoke compute kernels whose execution order may be sub-
ject to explicit control decisions. As kernels are encountered
in the course of the execution the application, the kernels
are dispatched to the runtime via non-blocking calls. Syn-
chronization takes place when the application checks for the
availability of the outputs of a dispatched kernel via blocking
calls. All cores have access to a shared address space.

Compute Kernels are analogous to functions or proce-
dure calls in imperative programming languages. However,
this model places restrictions on compute kernels that enable
fast inference of parallelism and independence from architec-
ture. First, all input and output arguments and their mem-
ory locations must be known when the kernel is invoked, i.e.,
no pointers embedded in the input/output arguments. Sec-
ond, a specific implementation of a kernel must use a single
heterogeneous processor exclusively. Third, a kernel may
have implementations for multiple processor architectures,
but, if so, all implementations must be identical in the sense
that they produce the same outputs for all possible combina-
tions of inputs. Finally, kernels may allocate local memory
for scratchpad computations, but this memory may not be
persistent across kernel executions.

Control Decisions are syntactic structures for specify-
ing control-dependent kernel execution and are analogous to
branches in that they can potentially change the sequential
flow of a Harmony application. Control decisions take in a
set of input variables and determine the next compute ker-
nel or control decision to be executed. Like compute kernels,
control decisions can have multiple implementations for dif-
ferent architectures as long as they behave identically. The
explicit specification of such control dependencies enables
transparent optimizations such as speculation and predica-
tion to improve concurrency at the level of compute kernels
in the same manner that branch prediction improves instruc-
tion level parallelism.

Shared Address Space enables Harmony to treat
kernel arguments as global variables explicitly managed by
the Harmony runtime. Intuitively, global variables can be
thought of as regions of memory of arbitrary size that can
be made visible to kernels, enabling runtime dependency
checks. These checks preclude the need for hardware sup-
port for coherence while memory consistency requirements
necessitate ensuring that all outstanding memory operations
from a specific kernel have completed before the kernel sig-
nals to the runtime that it is finished.

2.1 Execution Model Example
The execution of an application implementing this model

may be viewed as logically equivalent to that of a sequential
application executing on a modern super-scalar, out-of-order
(OOO), processor with instructions replaced by kernels and
functional units replaced by heterogeneous processors. Dur-
ing execution, an application (control) thread dispatches
kernels via the Harmony API causing the kernel along with
dependence information to be queued by the runtime for
execution. Dependence-driven scheduling over kernels in a
dispatch window deploys kernels on cores for which kernel
binaries exist. Optimizations such as speculative kernel ex-
ecution are supported via the separation of kernel execution
(affecting local state) and commitment of the results of ex-
ecution (affecting global state).

The following example is used to illustrate the advantages
and potential of this model of kernel level parallelism, as well
as identify opportunities and challenges. Figure 1 shows an
example of a sample execution of two iterations through a
H.264 video decoding application. Note that this example is
intended to highlight the features of the complete execution
model in a way that can be easily understood, and does not
correspond to an application that we have actually imple-
mented. For results from current applications implementing
this model, please see Section 3.

Figure 1a shows the basic building blocks of the applica-
tion; these building blocks correspond to compute kernels in
the Harmony programming model. The complete applica-
tion is shown in Figure 1b, where the large blocks represent
kernels and control decisions, and the smaller blocks repre-
sent global variables ( the darker variables represent inputs
and the lighter variables represent outputs ). In this exam-
ple, the first kernel parses a frame from an input stream,
updates the frame index, and stores the encoded frame in
a temporary variable. The next four kernels perform each
stage of the decode operation using temporary variables to
pass the intermediate results. The final object in the pro-
gram is a control decision that stores the decoded frame in
an output video array and jumps back the beginning if the
index has not reached the end of the input stream.

When the Harmony runtime begins executing this pro-
gram, it scans through the kernels as they are encountered
in the sequential flow of the application without blocking.
As it is doing this, it builds a graph representing all of
the data dependencies among kernels that have been en-
countered. Control decisions limit the number of kernels
that can be scanned without blocking because they poten-
tially change the flow of the application. This limitation can
be skirted using techniques like prediction or predication to
speculatively scan kernels beyond a control decision as long
as there is a method for recovering from misspectulations.
In Figure 1c, the white boxes denote kernels that have been
invoked speculatively.

Another issue arise when two kernels share the same mem-
ory, but do not have a producer/consumer relationship. In
Figure 1b, all of the temporary variables are reused through
multiple iterations of the decode loop. However, the decode
kernels do not have explicit flow dependencies. These are di-
rectly analogous to output and anti dependencies in instruc-
tion scheduling. Consequently, variable renaming is used to
eliminate non-flow dependences: every time a non flow de-
pendency is found between two kernels, the runtime allo-
cates a new variable to be used instead, effectively breaking
the dependency at the cost of increasing the memory foot-
print of the application. In the dependency graph shown in



Figure 1: Example execution of H.264 using Harmony

Figure 1c, all of the variables denoted in white boxes have
been renamed and replicated.

The runtime utilizes a machine model description (e.g.,
number and type of cores) paired with libraries from the ap-
plication to provide implementations for each kernel for at
least one (but possibly many) ISAs. As kernels complete ex-
ecution, dependencies between kernels in the dispatch win-
dow are updated and the schedule is revised. Figure 1d
shows an example schedule for the H.264 application using
a system with a CPU, GPU, and FPGA. This scheduling
phase creates a dynamic mapping from kernels to heteroge-
neous architectures, while the existence of binaries for mul-
tiple machines permits execution on systems with radically
different processor configurations, and performance to scale
as more resources are added to a system until kernel level
parallelism is exhausted.

Note that the execution time of individual kernels varies
across architectures and can even be data dependent (in Fig-
ure 1d, motion estimation runs three times as long on the
CPU as the GPU), yet being able to accurately predict this
time a-priori improves the quality of the schedule. To ad-
dress this issue, we plan to use online monitoring support
for execution time of each kernel as well as values of some
of the input variables. One can then construct data-value
dependent models of execution time as a function of target
core and utilize these to make more effective scheduling de-
cisions. We also plan to investigate the use of programer
supplied management functions in a kernel to use domain
specific information.

3. EXPERIMENTAL EVALUATION
Three sample applications were chosen to demonstrate

the feasibility of applying the Harmony programming model
across different domains: multiplication of dense matrices
using a panel-dot algorithm, ray tracing, and audio fre-
quency analysis. These applications were chosen to rep-
resent three classes of programs - (1) those with no data
dependencies, (2) those with loop carried dependencies, and

(3) those with complex dependencies from domains that are
relevant to scientific computing, computer graphics, and me-
dia processing respectively.

3.1 Experimental Setup
The experimental evaluation encompassed the following:

(1) The test platform consisted of a AMD Athlon64 2.4Ghz
CPU and an NVIDIA 8800GT GPU with 2GB DDR2 800
RAM, and Linux 2.6.22-14 as the operating system. All
CPU kernels were written in ANSI C++ and compiled with
GCC 4.1.3 and all GPU kernels were written using NVIDIA
CUDA and compiled with nvcc V0.2.1221. (2) The runtime
did not implement speculative execution. (3) The runtime
did not implement analytical curve fitting, but did use com-
plexity functions as described in Section 2.1.

3.2 Overview of Results
Figure 2a plots the normalized execution time of the ma-

trix multiplication application using i) CPU only, ii) GPU
only, and iii) CPU + GPU. Note that for small matrices,
the CPU implementation is more efficient, but for large ma-
trices, the GPU implementation is more efficient. This be-
havior can be explained with the observation that the GPU
can do more floating point multiply operations per second
than the CPU, but requires data to be sent to the GPU,
processed, and the results to be sent back to the CPU. This
operation can be amortized for large data sizes, but not small
data sizes, resulting in the Figure 2a graph. The Harmony
runtime is able to detect this behavior and transparently
(to the application) move computation to the GPU as the
matrix size increases, resulting in performance that follows
that of the fastest single-processor application for all matrix
sizes. This behavior is likely to be difficult to capture using
a static partitioning without runtime support, particularly
the crossover point where it becomes more valuable to use
the GPU than the CPU, which is likely to depend on the
exact model of CPU and GPU being used.

Figure 2b depicts the same normalized execution time for
the ray tracing application, comparing the performance of



(a) Matrix Multiplication - Scaling (b) Ray Tracing - Scaling (c) Audio Analysis - Scheduling Bias

Figure 2: Application Results

the Harmony version with that of the standalone CPU and
GPU versions. For this operation, the GPU is much more ef-
ficient than the CPU, experiencing a factor of 99.2 speedup.
Such a dramatic difference in performance between the two
versions of the kernel benefits greatly from a more intelli-
gent scheduler. As the figure demonstrates, simply assigning
kernels to cores as they become available as with a greedy
scheduler performs as much as 80 times worse than a more
sophisticated queue-based approach.

The final experiment demonstrates the difficulty in de-
termining a efficient schedule for an application with many
data dependencies. The audio frequency analysis applica-
tion consists of nine different compute kernels that attempt
to detect certain frequencies in an audio signal and remove
others. Figure 2c shows the percent of time that each ker-
nel was run (via automated Harmony decision making) on
the GPU versus the CPU. In general, some kernels perform
better on the GPU and others on the CPU, but there is no
fundamental rule that can be used to make this determina-
tion statically. This result highlights the principle advantage
of using a runtime like Harmony: an effective partitioning of
work among cores can be unintuitive, data dependent, and
system configuration dependent making it more amenable
to dynamic runtime mapping than static allocation by an
application developer or compilation environment.

4. CONCLUSIONS AND FUTURE WORK
The landscape of heterogeneous computing is dominated

by two extremes: high performance and high software de-
velopment complexity. In this paper, we have described on-
going work in developing Harmony: a runtime with the goal
of reducing the complexity of application development while
maintaining high performance that is scalable to many core
systems with heterogeneous architectures. By using a com-
pute kernel abstraction with constraints we find that we can
leverage existing code bases, significantly improve portabil-
ity and scalability, simplify development for sufficiently large
classes of applications, and still harness much of the cost ef-
fective potential of heterogeneous architectures. In addition
to the features described in Section 2, future work will ex-
plore: (1) variable granularity scheduling, where groups of
ready kernels are automatically coalesced and scheduled as

a single entity, thereby trading scheduling overhead for con-
currency, (2) hierarchical application, where the Harmony
programming model is applied hierarchically to distributed
systems of heterogeneous many core nodes, and (3) pattern
recognition, where common kernel patterns are identified
and their corresponding schedules are cached, forgoing the
need to resolve dependencies and reschedule for repetitions
of the patterns.

5. ACKNOWLEDGEMENTS
The authors gratefully acknowledge the generous support

of this work by LogicBlox Inc. both through research grants
as well as technical interactions, and equipment grants from
Intel Corp. and NVIDIA Corp.

6. REFERENCES
[1] V. T. Barry Minor, Gordon Fossum, “Terrain rendering

engine (tre),” tech. rep., IBM, 2005.

[2] J. Suh, E.-G. Kim, S. Crago, L. Srinivasan, and
M. French, “A performance analysis of pim, stream
processing, and tiled processing on memory-intensive
signal processing kernels,” Computer Architecture,
2003. Proceedings. 30th Annual International
Symposium on, pp. 410–419, 9-11 June 2003.

[3] M. Gordon, W. Thies, and S. Amarasinghe, “Exploiting
coarse-grained task, data, and pipeline parallelism in
stream programs,” in International Conference on
Architectural Support for Programming Languages and
Operating Systems, (San Jose, CA), Oct. 2006.

[4] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem,
M. Houston, J. Y. Park, M. Erez, M. Ren, A. Aiken,
W. J. Dally, and P. Hanrahan, “Sequoia: programming
the memory hierarchy,” in SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing, (New
York, NY, USA), p. 83, ACM, 2006.

[5] M. D. Linderman, J. D. Collins, H. Wang, and T. H.
Meng, “Merge: a programming model for heterogeneous
multi-core systems,” in ASPLOS XIII: Proceedings of
the 13th international conference on Architectural
support for programming languages and operating
systems, (New York, NY, USA), pp. 287–296, ACM,
2008.


