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2 Article Name Proposal

GPU Application Development, Debugging, and Performance Tuning with GPU Ocelot

3 Target Audience

The primary audience of this gem consists of developers of GPU computing applications who
benefit from tools to debug, performance tune, and characterize applications. The secondary
audience consists of researchers investigating compilation techniques, processor architectures,
and workload characterization. We will focus on the primary audience in this paper.

4 Problem Statement

Developers of highly-parallel applications that achieve large speedups on GPUs face new and
unique challenges in terms of developer productivity and the portability of applications. These
challenges can be addressed by gaining insights into GPU compute application behaviors, uti-
lizing effective tools to detect errors and identify performance bottlenecks, and finally to adapt
GPU applications according to the particular compute platform on which it is executed.

GPU Ocelot [1] is a dynamic compilation framework that addresses these challenges by pro-
viding a single infrastructure capable of: (1) instrumenting and profiling CUDA applications,
(2) observing and analyzing complex program behaviors, (3) identifying errors and performance
bottlenecks, and (4) executing and dynamically optimizing CUDA applications running on CPUs
and GPUs. We will discuss in greater detail how Ocelot’s instrumentation and functional sim-
ulation capabilities can be leveraged by GPU application developers to identify program bugs
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Figure 1: GPU Ocelot Dynamic Compilation Framework.

quickly, predict the efficiency of their application executing on entire class of GPU architectures,
and understand the behaviors of their applications in detail.

5 Core Technology

GPU Ocelot’s core capabilities consist of (1) an implementation of the CUDA Runtime API
[2], (2) a complete internal representation of PTX kernels [3] coupled to control- and data-
flow analysis procedures, (3) a functional emulator for PTX, (4) a translator to multicore x86-
based CPUs for efficient execution, (5) and a backend to NVIDIA GPUs via the CUDA Driver
API. Ocelot supports an extensible trace generation framework in which application behavior
such as control-flow uniformity, memory access patterns, and data sharing may be observed at
instruction-level granularity.

Ocelot’s three backend execution targets - PTX emulator, multicore translator, and NVIDIA
GPU - present a heterogeneous compute platform for data-parallel workloads. To use Ocelot,
a developer links their compiled CUDA application against Ocelot’s static library instead of
NVIDIA’s libcudart making integration with existing compiled applications seamless. GPU
Ocelot is tested for correctness against all of the CUDA SDK [4], Parboil benchmark suite [5],
and Thrust [6] unit tests and is currently part of the development toolchains of several GPU-
computing related projects. Ocelot’s support for efficient execution on multicore CPUs has
enabled research in heterogeneous computing such as predictive performance modeling [7] and
research in optimization techniques for data-parallel workloads [8].

6 Description of Work

GPU Ocelot is characterized by its front-end interface to existing CUDA applications, its ca-
pacity to analyze and transform PTX kernels using its IR, its complete representation of CUDA
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kernels and memory resources, and its support of three backend execution targets. Ocelot is im-
plemented in C++ with source code available under BSD license and distributed both through
static releases as well as anonymous SVN checkout from the Ocelot Project Site [1] available at
http://code.google.com/p/gpuocelot/.

GPU Ocelot implements the CUDA Runtime API. Compiled CUDA source files store mod-
ules as static blocks of text represented as PTX, NVIDIA’s virtual instruction set architecture
for GPUs, that are explicitly registered when the application is initialized. As illustrated in
Figure 1, Ocelot is invoked when applications are intialized as they attempt to register mod-
ules and variables. Ocelot parses the PTX representation of the modules into a data structure
representing the complete state of the CUDA-managed resources in an application.

CUDA Runtime API functions perform resource management procedures such as allocation
of memory on devices, binding of textures and arrays, and copying memory between address
spaces. Ocelot implements these functions and constructs a data structure representing each
resource in addition to allocating the block of memory in the selected device’s address space. This
enables memory checking for memcpy functions such as cudaMemcpy be ensuring destination
regions are contained by existing allocations. The PTX emulator and multicore translator
backends include support for more fine-grain memory checking by testing each address used by
a load or store against the set of valid memory allocations.

GPU Ocelot supports three backend execution targets: a functional PTX simulator which will
be described in greater detail in the following sections, a translator to multicore x86 CPUs, and a
backend to NVIDIA GPUs via the CUDA Driver API. The multicore translator is implemented
as a set of PTX-to-PTX transformations including conversion to static single-assignment form
followed by a translation from PTX to the native instruction set of Low-Level Virtual Machine
(LLVM) [8]. Most PTX instructions have a one-to-one correspondence with LLVM instructions,
and more complex instructions that typically have hardware support on GPUs, such as trigono-
metric functions and texture sampling, are implemented in software. When the LLVM kernel
is executed, a runtime statically maps blocks of the grid onto hardware worker threads which
execute each Cooperative Thread Array (CTA), serializing CUDA threads within the CTA and
respecting barrier synchronizations.

The NVIDIA GPU backend is implemented by emitting PTX modules as text and compiling
them to the selected GPU via the CUDA Driver API. Memory resources managed by Ocelot
are allocated by calls to the CUDA Driver API, and global variables are made consistent before
and after each kernel invocation. By using Ocelot as the implementation of the CUDA Runtime
API, applications can benefit from memory bounds checking during copy operations. Though
we have not fully explored the possibilities of instrumenting kernels for execution on GPUs,
Ocelot offers the unique capability to modify every kernel launched by a CUDA application
and insert additional correctness checks, watches on global variables, and instrumentation to
monitor application behavior.

6.1 PTX Functional Simulation

Ocelot’s PTX emulator models a virtual architecture illustrated in Figure 2 implementing the
PTX execution model. Each PTX instruction is executed for as many threads as possible before
moving on to the next instruction corresponding to an arbitrarily wide SIMD processor. Blocks
of memory store values for the virtual register file as well as the addressable memory spaces.
The emulator interprets each instruction according to opcode, data type, and modifiers such as
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rounding or clamping modes, updating the architectural state of the processor with computed
results.
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Figure 2: PTX emulator virtual architecture.

Kernels executed on the PTX emulator present the entire observable state of a virtual GPU
to user-extensible instruction trace generators. These are objects implementing an interface that
receives the complete internal representation of a PTX kernel at the time it is launched for initial
analysis. Then, as the kernel is executed, a trace event object is dispatched to the collection of
active trace generators after each instruction completes. This trace event object includes the
instruction’s internal representation and PC, set of memory addresses referenced, and thread
ID. At this point, the instruction trace generator has the opportunity to inspect the register file
and memory spaces accessible by the GPU such as shared and local memory. Practically any
observable behavior may be measured using this approach. In the next section, we will discuss
Ocelot’s interfaces for user-extended trace generators that compute custom metrics.

6.2 Extensible Trace Generation Framework

GPU Ocelot’s trace generation and analysis framework presents a clear and concise interface
to user-extensible trace generators which are the preferred method to instrument and profile
GPU applications. In this section, we will explain how trace generators are invoked by the PTX
emulator and discuss the information that is available.

The execution of a PTX kernel can be partitioned into three phases: launch configuration,
computation, and completion. Trace generators implement event handlers corresponding to each
of the three phases. At launch configuration, the values of kernel parameters and grid dimensions
are known. These are presented to each trace generator along with the internal representation
of the PTX kernel to be executed as well as constant references to the entire structure of loaded
modules and CUDA-managed resources. The entire state of the application is observable, and
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static analysis of the kernel may be completed at this point. Trace generators may, for instance,
count the number of static floating-point arithmetic instructions versus memory instructions.
As another example, the number of live registers may be counted as well as the number of
synchronization points.

During computation, the kernel is executed on one of the available Ocelot backends which
include GPUs and CPU execution targets. For the purposes of trace generation, only Ocelot’s
PTX emulator may be configured to generate events during computation. In this case, each
instruction is executed by one or more threads within the CTA, and then an object describing
the instruction is passed to each active trace generator. This TraceEvent object includes an
internal representation of the PTX instruction executed, vector describing the threads that
executed, block ID, and memory addresses referenced by the instruction.

Trace generators are notified when the kernel’s execution is complete presenting an oppro-
tunity to process instruction traces and insert results into a database or some other output
mechanism. Each of the existing trace generators distributed with GPU Ocelot uses the Boost
serialization library [10] to compile a database of all kernel invocations over all runs of an appli-
cation enabling results to be gathered over any number of runs of a set of applications. These
are post-processed by a collection of analysis tools which load the serialized data issued by the
trace generators, compute the metric or metrics of interest, and output results in a form suitable
for visualization.

7 Improvements of Performance or Quality

GPU Ocelot is a powerful tool useful for debugging GPU computing applications to ensure cor-
rectness and performance as well as characterizing the behaviors of applications. Its functional
PTX simulator in particular enables detailed observation of CUDA applications as they are
executing and presents an opportunity to identify program errors such as memory faults, race
detections, and deadlocks. Additionally, correct applications may be improved by identifying
hot paths to focus optimization efforts as well as detect and avoid performance pitfalls such as
bank conflicts and poor memory efficiency. In this section, we will discuss several of the facilities
within Ocelot to perform this kind of correctness checking and profiling.

7.1 Trace Generation

GPU Ocelot is distributed with a selection of instruction trace generators intended to observe
several important characteristics of program behavior. The list of trace generators is summarized
in Table 1. These were implemented to ensure program correctness, detect faults at runtime,
and compute several application metrics. A complete list of metrics with precise definitions
appear in [11] which also contains results gathered from the CUDA SDK examples and Parboil.

7.2 Correctness

MemoryChecker compares the address of every load, store, and texture sampling instruction
against the set of valid CUDA memory allocations. Addresses that are out of range result
in throwing a runtime exception describing the thread ID, address, and program counter of
the offending instruction. The following CUDA example illustrates Ocelot’s PTX emulator
detecting a bad memory reference and throwing a runtime exception identifying the faulting store

5



Table 1: Trace generators distributed with GPU Ocelot.
Trace Generator Summary of Functionality
Branch Measures control-flow uniformity and branch divergence
Instruction Measures number of static and dynamic instructions
KernelDimension Measures kernel grid and block dimensions
MachineAttributes Observes and records machine characteristics
Memory Measures working set size, memory intensity, and memory efficiency
MemoryChecker Instruments memory accesses and ensures they map to allocated regions
MemoryRaceDetector Identifies race conditions on shared memory
Parallelism Measures limits of MIMD and SIMD parallelism
SharedComputation Measures extent of data-flow among threads
WarpSynchronous Measures hot paths and regions suitable for warp-synchronous execution
Watch Observes and records reads and writes to regions of memory

instruction, the invalid address, the block and thread ID on which the instruction was executed,
and a line number in the original CUDA source file producing the PTX store instruction. Note,
the runtime exception also prints the existing allocations that constitute valid memory regions.

// f i l e : memoryCheck . cu

g l o b a l void badMemoryReference ( int ∗A) {
A[ threadIdx . x ] = 0 ; // l i n e 3 − f a u l t i n g s t o r e

}
int main ( ) {

int ∗ i n va l i dP t r = 0x0234 ; // po in t e r a r b i t r a r i l y chosen , not a l l o c a t e d v ia

// cudaMalloc ()

int ∗ va l idPt r = 0 ;

cudaMalloc ( ( void ∗∗)&val idPtr , s izeof ( int )∗64 ) ;

badMemoryReference<<< dim3 (1 , 1 ) , dim3 (64 , 1) >>>( i nva l i dPt r ) ;

return 0 ;

}

===== Ocelot Runtime Exception =============

[PC 6 ] [ thread 0 ] [ cta 0 ] s t . g l oba l . s32 [%r5 + 0 ] , %r0 −
Global memory ac c e s s 0x234 i s not with in any a l l o c a t e d or mapped range .

Al l a l l o c a t i o n s On dev i ce Ocelot PTX Emulator :

===== Ocelot g l oba l memory a l l o c a t i o n s =====

=== a l l o c a t i o n ===

= 0x1740230 − 0 x174032f

= po in t e r : 0x1740230

= 256 bytes

= dev i ce address space : 0

= l i n e a r s t ruc ture , 1D

= pi t ch : 256

= width : 256

= he ight : 1

============================================

Near memoryCheck . cu : 3 : 0

============================================

Cooperative Thread Arrays in CUDA consist of a collection of threads that may share
data and synchronize at thread barriers. Threads may be executed serially or concurrently
provided they all reach barrier instructions before any thread moves on to the next instruction.
CTAs exchanging data among threads through shared memory necessarily must synchronize
with barriers to ensure all threads have finished writing to their particular location before a
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dependant thread reads the value. Failure to include synchronizations is a common source of
transient correctness errors in applications, and the consequences are frequently subtle enough
to avoid detection. To avoid such race conditions, Ocelot’s MemoryRaceDetector optionally
annotates each byte of shared memory with the ID of the last thread to write to it. Subsequent
loads and stores check to determine whether multiple threads have shared data without an
intervening barrier synchronization. If no barrier has been excuted, a runtime exception is
thrown indicating a race condition. The following listing demonstrates Ocelot’s detection of a
race condition in a kernel from Thrust.

==Ocelot== Emulator f a i l e d to run ke rne l

” ZN6thrust6deta i l6device4cuda6deta i l23radixSortBlocksKeysOnlyILj4ELj0ELb0ENS3 19modi f i ed

preprocessINS3 11encode uintI iEEjEEEEvP5uint4SA jjT2 ”

with except ion :

==Ocelot== [PC 114 ] [ thread 0 ] [ cta 0 ] ld . shared . u32 %r89 , [%r63 + 124 ]

− Shared memory race cond i t ion , 0x8c was p r ev i ou s l y wr i t t en by thread 31

without a memory b a r r i e r in between .

==Ocelot== In

/home/normal/ checkout / th rus t / th rus t / d e t a i l / dev i c e /cuda/ d e t a i l / s t a b l e r a d i x s o r t . i n l : 1 0 1 : 0

==Ocelot==

Deadlocks in CUDA occur when two threads reach different thread barriers and both neces-
sarily block waiting for the other to resume. Because the PTX emulator attempts to reconverge
threads as early as possible, detecting whether a particular barrier synchronization instruction
will result in a deadlock is as straightforward as ensuring all threads have reconverged and are
active. GPU Ocelot’s detailed runtime exception identifies the particular synchronization on
which threads have deadlocked and could be used to identify the control paths taken by the
diverged threads.

7.3 Performance Tuning

The largest factors affecting performance of GPU applications are related to memory access and
control flow uniformity. Memory behavior is impacted by spatial locality and the efficiency in
which off-chip bandwidth is utilized. Ocelot measures efficiency by implementing the memory
coalescing protocol defined in the CUDA Programming Guide and determining the number of
cycles needed to satisfy each memory request. Figure 3 illustrates the average efficiency of loads
and stores to global memory relative to peak memory bandwidth. This data was recorded by
MemoryTraceGenerator over a selection of CUDA applications and offers feedback to developers
by identifying which kernels are the most memory intensive and which memory instructions are
the least efficient.

Control flow uniformity refers to the fraction of threads that take the same control paths
between synchronizations. If all threads of a warp execute the same path, the SIMD units in
each multiprocessor execute them concurrently. If threads of the same warp diverge, they must
be serialized. In previous work, we define activity factor as the average number of threads
that would be executed concurrently on an infinitely wide SIMD machine and provide a trace
generator to measure this in actual applications. Figure 4 illustrates activity factor gathered
from a selection of CUDA applications by BranchTraceGenerator using two different warp
reconvergence mechanisms in the PTX emulator. With GPU Ocelot, it is possible to identify
which branches are the most divergent.
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Figure 3: Memory efficiency of CUDA applications.

Figure 4: Activity factor for CUDA applications.

7.4 Custom Trace Generation

GPU Ocelot’s trace generation framework provides a concise interface in which custom trace
generators can be implemented and inserted into CUDA programs to measure application- or
research-specific behaviors. TraceEvent objects encapsulate all structural information needed
to interpret a PTX instruction, and trace generators can inspect the complete state of all CUDA-
managed resources as well as control- and data-flow graphs of the kernel being executed. We have
used this infrastructure to support our own research efforts [7],[11]. Additionally, Ocelot’s trace
generation framework has been used to construct instruction traces as inputs to timing models
for GPU architecture simulation in [12]. Finally, we are aware of several additional projects
using GPU Ocelot to understand memory behavior of CUDA applications and to model the
effects of warp formation.

8 Additional Work

GPU Ocelot is actively developed by several core contributors to pursue research on runtimes
and dynamic compilation techniques for heterogeneous compute platforms. By the end of May,
2010, we plan to release a version of GPU Ocelot with two additional capabilities: (1) device
switching and (2) vectorization for multicore CPU execution targets.

Ocelot is conceived as the dynamic compilation framework in a larger infrastructure for man-
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aging execution in a system with several different types of processors. To enable optimizations
such as running each kernel on the device where it will execute the fastest, Ocelot will support
the ability to migrate state to different execution targets as the application is executing on
kernel boundaries. We envision this also being useful to expedite profiling, as all kernels could
execute on their fastest processor except a particular kernel of interest which could execute on
the PTX emulator to gather detailed results.

To improve utilization on execution targets lacking hardware support for branch divergence,
Ocelot’s multicore translator is being enhanced to support packing multiple logical threads into
a single vectorized control path using techniques discussed in [13]. We expect performance to
increase by factors of 2× and more due to both utilizations of vector units in addition to more
efficient memory and control flow behavior. Multicore x86 CPUs include support for 4-wide
SIMD units via SSE instructions, and together with other processor architectures such as Cell
and Larrabbee constitute a collection of vectorizable execution targets. Traditional approaches
to parallelizing and vectorizing regions of code have not started from explicitly data-parallel
execution paths as available in PTX, and we believe vectorization within Ocelot will achieve
superlinear speedup of kernels executing on multicore CPUs.
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