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Abstract

Relational databases remain an important application infrastructure
for organizing and analyzing massive volumes of data. At the same
time, processor architectures are increasingly gravitating towards
Multi-Bulk-Synchronous processor (Multi-BSP) architectures em-
ploying throughput-optimized memory systems, lightweight multi-
threading, and Single-Instruction Multiple-Data (SIMD) core orga-
nizations. This paper explores the mapping of primitive relational
algebra operations onto such architectures to improve the through-
put of data warehousing applications built on relational databases.

Categories and Subject Descriptors H.2.4 [Database Manage-
ment]: System—Relational Database, Query Processing

Keywords Relational Algebra, GPGPU

1. Introduction

Modern relational database systems and languages are built on ef-
ficient implementations of relational algebra (RA) operators com-
bined with specialized data structures that are used to store rela-
tions. These systems have been deployed with success on single-
core processors and clusters. However, as power-constrained pro-
cessor architectures move towards multiple cores with fine grained
SIMD parallelism and non-uniform or user-managed memory hi-
erarchies (e.g. modern GPGPUs), new algorithms are needed that
can harness the massive parallelism provided by these processors.

Relational operations capture the high level semantics of an ap-
plication in terms of a series of bulk operations on relations. The
data intensive nature of relations might suggest that a high degree
of data parallelism could be discovered in RA operations. Unfortu-
nately, this parallelism is generally more unstructured and irregular
than other domain specific operations complicating the design of
efficient parallel implementations. In particular, we identify a fun-
damental conflict between the structure of algorithms with good
computational complexity and that of algorithms with memory ac-

cess patterns and instruction schedules that achieve peak machine
utilization. To reconcile this conflict, our design space exploration
converges on a hybrid multi-stage algorithm that devotes a small
amount of the total runtime to prune input data sets using an ir-
regular algorithm with good computational complexity. The par-
tial results are then fed into a regular algorithm that achieves near
peak machine utilization. These algorithms can be used directly to
implement a relational database system in a single node using a
single GPU blade, or as building blocks in higher level distributed
algorithms that scale to multiple processors within a node or across
multiple nodes.

2. Data Structure and Algorithm Design

RA consists of a set of fundamental transformations that are applied
to relations. A relation consists of n-ary tuples that map attributes
(or dimensions) to values. Each attribute consists of a finite set of
possible values and an n-ary tuple is a list of n values, one for
each attribute. Each transformation included in RA performs an
operation on a relation, producing a new relation. Many operators
divide the tuple attributes into key attributes and value attributes. In
these operations, the key attributes are considered by the operator
and the value attributes are treated as payload data which are not
considered. In this work, relation is stored as a weakly ordered
densely packed array of tuples for efficient access in GPUs.

A relational database application is specified as a dataflow graph
of operators, making for a natural mapping to a variety of paral-
lel execution models, for example, by mapping operators to Multi-
BSP kernels and relations to data structures. RA operators include
SET family (UNION, INTERSECTION, DIFFERENCE), CROSS
PRODUCT, JOIN, SELECT, and PROJECT. All operators are de-
signed to have the same sequence of stages (partition, compute,
and gather) where each stage has a Multi-BSP structure, which
eases further cross-operator optimization [1]. The philosophy of
the algorithm design is to increase core utilizations (achievable
throughput) until the computation becomes memory bound, and
then achieve near peak utilization of the memory interface. This pa-
per only introduces the implementation of the most complex opera-
tor, JOIN. The implementation of the other operators can be found
in a technical report [2].

Figure 1 shows the three stages of a JOIN. The initial partition
stage (Figure 1(a)–(b)) operates on a sorted list and is performed
in-place and the partitions are sized as follows. One of the input
relations is partitioned into N parts bounded by pivot elements.
Each partition will be processed by a single cooperative thread
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Figure 1. Example of the JOIN.

array (CTA). A binary search is used to lookup the tuples in the
other input corresponding to the pivots creating a corresponding
series of partitions in the second array. The partitions in the two
inputs now have overlapping index ranges of tuples. This stage
is critical for sparse data sets because it quickly discards large
segments of the input relations that do not overlap.

The compute stage (Figure 1(c)) is the most complex stages of
the three. It identifies subsets of the partitioned relations with over-
lapping attributes and performs the cross product for each subset.
This presents a significant problem to parallel implementations of
the algorithm that eventually write to a statically allocated dense
array. Namely, the number of tuples in each partition of the out-
put relation is unknown until very late in the computation. The
algorithm is that once the inputs have been partitioned, each pair
of partitions is assigned to a separate CTA to perform the merge
operation independently. The merge operation is implemented by
scanning one of the input partitions one chunk of tuples at a time
where a chunk is a number of tuples that can be processed by a
fixed number of threads in a CTA. This chunk is loaded into shared
memory for fast access. A corresponding chunk from the second
input partition is also loaded into shared memory and a CTA-JOIN
is performed upon two chunks within a CTA. Chunks from the sec-
ond input partition are scanned until they go out of range of the first
chunk, at which time a new chunk is loaded from the first parti-
tion and the process is repeated. The results of CTA-JOIN are gath-
ered into shared memory until a threshold is reached and eventually
written out to a preallocated temporary array. The chunk copy op-
erations into and out of shared memory are carefully designed such
that they maximize DRAM bandwidth. The default CTA-JOIN al-
gorithm is referred as Binary-Search CTA-JOIN. Other alternative
implementations are described in the technical report [2].

Binary-Search CTA-JOIN is based on a parallel binary search,
similar to the partition stage of the complete join algorithm. Each
thread accesses a tuple from one of the input relations and com-
putes the upper bound and lower bound of that tuple’s key in the
other relation. The elements between the two bounds match the
tuple’s key and are joined together. Results generated are aggre-
gated using the stream compaction algorithm and buffered until
a threshold number of tuples is reached. At this time, the buffer
is written out completely to global memory. Even though this im-
plementation has good algorithmic complexity, it suffers in terms
of work-efficiency and processor utilization. It includes a chain
of data-dependent loads to shared memory and control-dependent
branches. Furthermore, the binary search result of different threads
may overlap presenting an opportunity for shared memory bank
conflicts and instruction replays when combining two tuples. The

other CTA-JOIN algorithms make different trade-off decisions to
address these problems.

The final gather stage requires first computing the position of
each partition of the result in the final array. This is performed
by updating a histogram during the compute stage, followed by
an out-of-place scan operation over the histogram buckets (Fig-
ure 1(d)). Again, the number of partitions is sized such that this op-
eration is relatively inexpensive compared to the compute phase.
Once the position of each section in the output relation is deter-
mined, elements need to be copied from a temporary buffer for each
section into the final array (Figure 1(e)).

3. Performance

We ran a set of experiments on Tesla C2050 GPU to examine the
performance of each RA operator algorithm. The size of each in-
put relation is swept from 8192 to 16 million tuples. The tuple at-
tributes are randomly generated 32-bit integers. These algorithms
are expected to be memory bound, and the results are presented
in achieved bandwidth. The most efficient algorithms (PRODUCT,
PROJECT, and SELECT) achieve 86% − 92% of peak machine
performance (achieved bandwidth of an optimized stream-copy
benchmark) across all input data sets. The least efficient algorithm
(JOIN) achieves 57% − 72% of peak machine performance de-
pending on the density of the input. The detailed analysis is in the
technical report [2]. To the best of our knowledge, our algorithms
represent the best known published results to date for any imple-
mentations.
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